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Abstract. The phenomenological investigation of noncommutative space-time in the laboratory frame is
presented. We formulate the apparent time variation of noncommutativity parameter θµν in the laboratory
frame due to the earth’s rotation. Furthermore, in the noncommutative QED, we discuss how to probe the
electric-like component θE = (θ01, θ02, θ03) by the process e

−e+→ γγ at future e−e+ linear collider. We
may determine the magnitude and the direction of θE by detailed study of the apparent time variation of
the total cross-section. If no signal is observed, the upper limit on the magnitude of θE can be determined
independent of its direction.

1 Introduction

The early study of noncommutative space-time was pre-
sented by Snyder [1, 2] in 1947, with respect to the need to
regularize the divergence of quantum field theory. In Sny-
der’s work, it was suggested that the divergence may be
regularized by an elementary unit of length induced by the
noncommutativity of space-time. Snyder’s basic idea was
the extension of the quantization of phase space in quan-
tum mechanics. Furthermore, noncommutativity of space-
time may arise from string theory in the specific low energy
limit [3, 4]. The noncommutative space-time is character-
ized by operators X̂µ satisfying the commutation relation

[X̂µ, X̂ν ] = iθµν , (1)

where θµν is antisymmetric constant matrix, θµν = −θνµ
and [X̂ρ, θµν ] = 0, and θµν have dimension of (Length)

2.
Therefore, (1) introduces the elementary unit of length
in the theory, such as the Planck constant in quantum
mechanics.
Nonzero constant matrix θµν may violate Lorentz in-

variance. Lorentz violations have been studied in noncom-
mutative quantum field theory [5] and also in the frame-
work of an effective Lagrangian in which Lorentz and CPT
invariance are violated [6–8].
It is known that QED in noncommutative space time

(NCQED) [9] is invariant under the noncommutative ver-
sion of U(1) gauge transformation and is renormalizable
at one loop level [9–12]. Axial anomaly [11, 12] and CPT
invariance [13] in NCQED have also been studied. There
are several phenomenological studies on NCQED for low
energy experiments [14–19]. Assuming θµν is constant in
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the laboratory frame, researchers have found the noncom-
mutativity scale ΛNC to satisfy ΛNC > 100GeV [18], so
that the result of Lamb shift is consistent with the ordi-
nary quantum mechanics. Other limits on noncommuta-
tivity parameter have been found to be θ � (10 TeV)−2, if
θµν ≡ θεµν , by an analysis of noncommutative Aharonov–
Bohm effect [19]. High energy phenomenology in NCQED
has also been studied for several processes at future lin-
ear colliders [20–26]. Moreover, phenomenology relevant
to standard model (SM) like interactions in noncommu-
tative space-time have also been studied [27–38] on the
assumption that we may obtain SM-like interaction in non-
commutative space-time by the procedure replacing every
products of fields with the star product. In those previous
studies, however, the direction of θµν have been assumed
to be fixed to the laboratory frame. Such an assumption
might be justified, if measurements would be given by the
data set suitably averaged over time and also over polar
angle distributions.
The θµν , however, may be considered as an elemen-

tary constant in the nature. And there may exist a class of
specific coordinate system in which the direction of θµν is
fixed. It is likely that such a coordinate system is fixed to
the celestial sphere.
On the contrary, the laboratory frame is located on the

earth and is moving by the earth’s rotation. Therefore, as
was mentioned in [20, 38, 39], we should take into account
the apparent time variation of θµν in the laboratory frame
due to the earth’s rotation when we discuss phenomenol-
ogy for any experiment on the earth. In this paper, we
will consider the effect of apparent time variation of θµν
in the collider experiments by taking the earth’s rotation
seriously.
If an anisotropy due to noncommutativity of space-time

exists, probing the specific direction of θµν and measur-
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ing the magnitude of elementary unit of length are very
interesting tasks from both experimental and theoretical
aspects. We may determine the direction of θµν by the an-
alysis taking into account effects of time variation of the
measurements.
This paper is organized as follows. In Sect. 2, we present

the parameterization of θµν , including the effect of the
earth’s rotation. In Sect. 3, we make some comments on the
time dependent cross-section and we define the time aver-
aged cross-section. In Sect. 4, we show several numerical
results and we discuss how to probe θµν at future linear
collider experiments. Finally, we conclude our result and
discussion.

2 Expression of θµν in the laboratory frame

The noncommutativity parameter θµν can be classified
into two parts. One is the electric-like component θE =
(θ01, θ02, θ03). Another is the magnetic-like component
θB = (θ23, θ31, θ12). Those elements can be determined
when a coordinate system is chosen. In the specific coordi-
nate system, both θE and θB should be constant vectors.
Hereafter we call such a coordinate system a “primary”
coordinate system. It is feasible that we take a set of co-
ordinates fixed to the rest frame of the cosmic microwave
background(CMB) as a “primary” coordinate system. Ac-
cording to COBE experiment [40, 41], the boost of the solar
system for the CMB rest frame is about 370 km/s. This
is about 0.12% of the speed of light in a vacuum. More-
over the speed of the earth in the solar system is about
29.78 km/s. Therefore the effect of the boost to the meas-
urement of θE and θB are small enough to be neglected in
comparison with the detector resolution in the collider ex-
periments. And we may consider that the CMB rest frame
is fixed to the celestial sphere approximately. Thus, here-
after, we assume that a primary coordinate system and also
each direction of θE and θB are fixed to the celestial sphere
effectively.
First, we introduce a primary coordinate system. The Z

axis is along the axis of the earth’s rotation and the positive
direction of Z axis points to the north. The axis pointed
to the vernal equinox (ΥJ2000.0) is labeled X. We take the
X–Y –Z system as the right-hand system. Figure 1 shows
the sketches of the primary coordinate system and the di-
rection θE parametrized by η and ξ.
Let eX, eY and eZ be the orthonormal basis of the pri-

mary coordinate system (X–Y –Z). Then

θE = θE (eX sin η cos ξ+eY sin η sin ξ+eZ cos η) ,
(2)

where 0≤ η ≤ π, 0 ≤ ξ ≤ 2π and θE ≡ |θE|. To be exact,
thisX–Y –Z coordinate systemmoves slightly owing to the
earth’s precession. Since the period of the earth’s preces-
sion is about 2.6×104 years, the vernal equinox is moving
by about 0.014 degree/year. Therefore, we can neglect the
earth’s precession during the term of most experiments.
On the other hand, the usual coordinate system for ex-

periments is fixed to the detector. We label each axis of

Fig. 1. The “primary” coordinate system (X–Y –Z). The axis
X point to the vernal equinox ΥJ2000.0. The electric-like com-
ponent θE of θµν is also shown. The direction of θE is parame-
terized by the polar angle η and the azimuth ξ

such a coordinate system by small letter (x, y, z). As an
example we consider an e−e+ collider experiment. The ori-
gin is set at the interaction point. The z axis is along the
direction of the e− beam. The y axis is chosen along the
zenith and the x axis is chosen along the horizontal direc-
tion to make a right-hand coordinate. Hereafter we call this
coordinate system the “laboratory” coordinate system.
As is shown in Fig. 2, we parameterize the orientation

of an e−e+ experiment on the earth by an angle δ between
the y axis and theX–Y plane at the interaction point1, the
angle a between the z axis direction and the meridian at
the detector site, and the angle ζ between the X–Z plane
and y–Z plane. The angle a is measured counterclockwise
from the north.2

Let ex, ey and ez be the orthonormal basis of the labo-
ratory coordinate system (x–y–z). The transformation be-
tween (eX, eY, eZ) and (ex, ey, ez) is given by⎛
⎝
eX
eY
eZ

⎞
⎠=R

⎛
⎝
ex
ey
ez

⎞
⎠ , (3)

R =

⎛
⎝
cζ −sζ 0
sζ cζ 0
0 0 1

⎞
⎠
⎛
⎝
cδ 0 −sδ
0 1 0
sδ 0 cδ

⎞
⎠
⎛
⎝
1 0 0
0 ca −sa
0 sa ca

⎞
⎠

×

⎛
⎝
0 1 0
−1 0 0
0 0 1

⎞
⎠

=

⎛
⎝
casζ+ sδsacζ cδcζ sasζ − sδcacζ
−cacζ+ sδsasζ cδsζ −sacζ− sδcasζ
−cδsa sδ cδca

⎞
⎠ ,

(4)

with −π/2≤ δ ≤ π/2 and 0 ≤ a ≤ 2π, where we use the
usual abbreviation, cζ = cos ζ, etc.
In the study of Lorentz violation [6, 7], a similar trans-

formation was considered. By setting δ = 0 and replac-

1 The δ may be regarded as the latitude of the detector site
approximately.
2 Our definition of the angle a is opposite to the definition of
the azimuth in astronomy. We define the angle a as it increases
with a positive rotation in the right-hand system. We may call
the angle a the counter-azimuth.
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Fig. 2. Arrangement of laboratory coordinate system (x–y–z)
for an experiment on the earth in the “primary” coordinate sys-
tem (X–Y –Z). δ, a and ω are constants

ing ζ to ζ+π/2 in (4), we can reproduce the transform-
ation formula used in [6, 7]. The difference between the two
parametrizations is mainly in the definition of the labora-
tory coordinate system, especially y axis. In [6, 7], the y
axis is always taken to be parallel to the X–Y plane in the
primary coordinate system. Hence the x and y axes in [6, 7]
are different from those in the collider experiments. Our
parametrization of the x, y, z axes can be readily used in
any collider or accelerator experiments whose beams are
set parallel to the earth surface.
Hereafter we take the orthonormal basis of the labora-

tory coordinate system as the usual way, ex = (1, 0, 0)
T ,

ey = (0, 1, 0)
T and ez = (0, 0, 1)

T . Then, in the laboratory
coordinate system, the orthonormal basis of the primary
coordinate system can be written as

eX =

⎛
⎝
casζ + sδsacζ
cδcζ

sasζ − sδcacζ

⎞
⎠ ,

eY =

⎛
⎝
−cacζ+ sδsasζ

cδsζ
−sacζ− sδcasζ

⎞
⎠ ,

eZ =

⎛
⎝
−cδsa
sδ
cδca

⎞
⎠ . (5)

Note that in the laboratory coordinate system the direc-
tion of Z axis, namely the axis of the earth’s rotation, is
fixed by the location and the orientation of e−e+ experi-
ment (δ, a). For example, (δ, a) of LEP experiments [42]
are approximately (46.15◦, 40◦) for OPAL, (46.15◦, 130◦)
for ALEPH, (46.15◦, 220◦) for L3 and (46.15◦, 310◦) for
DELPHI.
The angle ζ increases with time t owing to the earth’s

rotation. A detector site will return to the same direction
by a sidereal day, Tday = 23 h56m4.09053 s [43]. Therefore,
we may take

ζ = ωt with ω ≡ 2π/Tday , (6)

by setting t= 0 when the detector site is on the X–Z half
plane withX > 0. In this way, all the experimental data at
all times can be combined by keeping the right phase.
Substituting (5) into (2), we find the expression of θE in

the laboratory coordinate system,

θE = θEV+ θES , (7)

θEV = θE sin η

⎡
⎣
⎛
⎝
sδsa
cδ
−sδca

⎞
⎠ c(ωt−ξ)+

⎛
⎝
ca
0
sa

⎞
⎠ s(ωt−ξ)

⎤
⎦ ,

(8)

θES = θE cos η

⎛
⎝
−cδsa
sδ
cδca

⎞
⎠ , (9)

where θES is the projection of θE onto the Z axis and is
the stable part of θE in the laboratory coordinate system.
θEV is the time variation part of θE. The direction of θEV
revolves about the θES axis by a period Tday. This is the ap-
parent time variation due to the earth’s rotation. The angle
parameter ξ appears in the expression of θEV as the initial
phase for time evolution. It is easy to show that

|θES|= |θE| cos η , |θEV|= |θE| sin η ,

θES · θEV = 0 , |θES|
2
+ |θEV|

2
= |θE|

2
. (10)

Therefore the magnitude of each vector θES, θEV and θE is
independent of time.
Let ΘLab be the polar angle of θES in the laboratory

coordinate system. From (9), we find cosΘLab = cδca. We
may classify the apparent time variation into two typical
cases, η ≤ΘLab and η ≥ΘLab. Figure 3 shows the two cases
for the apparent time variation of θE in the laboratory co-
ordinate system. Let ΦE be the azimuthal angle of θE in
the laboratory coordinate system. In the case (a) η ≤ΘLab,
ΦE varies in the region of (Φ

max
E −ΦminE )≤ π. On the other

hand, in the case (b) η ≥ ΘLab, ΦE varies in the whole

Fig. 3. Two typical time variation of θE in the laboratory
frame. a for η ≤ ΘLab and b for η ≥ ΘLab, where cosΘLab =
cδca
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region. Therefore we may expect that some typical differ-
ences exist between the case (a) and (b) in the angular
distribution for a process, for example e−e+→ γγ, which
are affected by the space-time noncommutativity.
The magnetic-like component θB is also parametrized

by the same way. In general, however, both the direction
and the magnitude of θB are different from those of θE.
Therefore θµν can be parameterized by six parameters,
four angles and two magnitudes of θE and θB, θE = |θE|
and θB = |θB|. In the primary coordinate system,

θE = θE (eX sin ηE cos ξE+eY sin ηE sin ξE+eZ cos ηE) ,
(11)

θB = θB (eX sin ηB cos ξB+eY sin ηB sin ξB+eZ cos ηB) .
(12)

By using (5), we can obtain the expression of θE and θB
in the laboratory coordinate system. We should take θE
and θB as model parameters and the corresponding energy
scale may be defined as ΛE = 1/

√
θE and ΛB = 1/

√
θB.

3 e�e+→ γγ in NCQED

A field theory in noncommutative space-time can be de-
scribed equivalently by a field theory with commutative
space-time variables in which every products of fields are
replaced by the star product of fields. The star product is
defined by

f � g(x) = exp

(
i

2
∂µy θµν∂

ν
z

)
f(y)g(z)

∣∣∣∣
y=z=x

, (13)

where x, y and z are ordinary commutative variables.
NCQED action [9] is then given by

S =

∫
d4x

(
−
1

4
Fµν �Fµν + iΨ̄γ

µ �DµΨ −mΨ̄Ψ

)
,

(14)

where Fµν = ∂µAν −∂νAµ− ie(Aµ �Aν −Aν �Aµ). The
covariant derivative of the matter fields is given by DµΨ =
∂µΨ − ieAµ �Ψ . We need nonlinear terms in field strength
Fµν to keep NCQED action invariant under noncommuta-
tive U(1)� gauge transformation,

Aµ→A
′
µ = U(x)�Aµ �U

−1(x)−
i

e
(∂µU(x))�U

−1(x) ,

(15)

Ψ(x)→ Ψ ′(x) = U(x)�Ψ(x) , (16)

Ψ̄(x)→ Ψ̄ ′(x) = Ψ̄(x)�U−1(x) , (17)

where

U(x) = exp(iα(x))� ≡
∑
n=0

(iα(x)�)n

n!
(18)

and U(x)�U−1(x) = U−1(x)�U(x) = 1.

In NCQED, we consider the pair annihilation process
e−(k1)e

+(k2)→ γ(p1)γ(p2) at future e−e+ linear colliders.
Each momentum is taken to be

kµ1 =

√
s

2
(1, 0, 0, 1) , kµ2 =

√
s

2
(1, 0, 0,−1) ,

pµ1 =

(√
s

2
,p

)
, pµ2 =

(√
s

2
,−p

)
, (19)

wherep= (
√
s/2)(sθcφ, sθsφ, cθ). θ and φ are the polar and

the azimuthal angles of final state photon in the labora-
tory coordinate system. The differential cross-section for
e−(k1)e

+(k2)→ γ(p1)γ(p2) in the center of mass system is
given by

dσobs
d cos θdφ

=
α2

2s

(
t

u
+
u

t
−4
t2+u2

s2
sin2∆NC

)
,

(20)

∆NC =
pµ1θµνp

ν
2

2
=−
(s
4

) θE ·p
|p|

, (21)

where s, t and u are usual Mandelstam variables, s= (k1+
k2)
2, t = (k1−p1)2 and u= (k1−p2)2. Since two photons

in the final state are identical, we cannot distinguish two
configuration (θ, φ) and (π−θ, π+φ). Equation (20) is de-
fined in the region 0≤ cos θ < 1 and 0≤ φ≤ 2π. The θE is
given in (7), (8) and (9). When ∆NC = 0, the differential
cross-section (20) reduces to that in QED.
It is easy to show from (20) and (21) that ∆NC(π−

θ, π+φ) = −∆NC(θ, φ) and

dσobs
d cos θdφ

(∆NC) =
dσobs
d cos θdφ

(−∆NC) . (22)

Moreover, this imply that the differential cross-section (20)
is symmetric for the change of the sign of θE, θE↔−θE.
Therefore we cannot distinguish between (η, ξ) and (π−
η, π+ ξ) by observing the process e−e+→ γγ. There is
twofold ambiguity for the determination of (η, ξ).
We can see from (20) that the NCQED effect on the

differential cross-section of e−e+→ γγ always gives the
negative contribution; moreover, from (21) we find

|∆NC|=max(∆NC) =
s

4
θE if p ‖ θE , (23)

∆NC = 0 if p⊥ θE . (24)

This means that, when we compare the NCQED predic-
tion with the QED prediction, the deficit of the differential
cross-section appears around the specific direction in which
p is almost parallel to θE. Furthermore, such a specific
direction varies with time in the laboratory coordinate sys-
tem, as we have discussed in the previous section. There-
fore, in general, observables for e−e+→ γγ in the labora-
tory coordinate system have time dependence even for the
total cross-section.
We may consider that cross-sections measured at col-

lider experiments are the mean values averaged over the
operation time of each experiment. And such a mean value
should be compared with NCQED prediction averaged
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over time. Taking into consideration that the period of
time variation of the observables in NCQED is the sidereal
day Tday, we introduce the time averaged observables as
follows:

〈
dσ

d cos θdφ

〉

T

≡
1

Tday

∫ Tday
0

dσobs
d cos θdφ

dt , (25)

〈
dσ

d cos θ

〉

T

≡
1

Tday

∫ Tday
0

dσobs
d cos θ

dt , (26)

〈
dσ

dφ

〉

T

≡
1

Tday

∫ Tday
0

dσobs
dφ

dt , (27)

〈σ〉T ≡
1

Tday

∫ Tday
0

σobsdt , (28)

where

dσobs
d cos θ

≡

∫ 2π
0

dφ
dσobs
d cos θdφ

, (29)

dσobs
dφ

≡

∫ 1−ε
0

d(cos θ)
dσobs
d cos θdφ

, (30)

σobs ≡

∫ 1−ε
0

d(cos θ)

∫ 2π
0

dφ
dσobs
d cos θdφ

. (31)

The polar angle cut is denoted by ε (0≤ ε≤ 1).
Note that we have integrated out the ξ dependence of

the observables by taking average over time, since ξ play
a role of initial phase for time evolution. Therefore θE
and the angle η may be determined by the time averaged
observables.

4 Numerical results

We show several characteristic results in NCQED and also
discuss how to probe θE by using observables in the labo-
ratory coordinate system.We set the laboratory coordinate
system by taking (δ, a) = (π/4, π/4), which is close to the
OPAL experiment at LEP.The cut for cos θ is taken ε= 0.2.

4.1 Azimuthal angle distribution

Anisotropy of azimuthal angle distribution of e−e+→ γγ
is predicted in NCQED even if we consider the time av-
eraged distribution 〈dσ/dφ〉T . Figure 4 shows 〈dσ/dφ〉T
for θE = (500 GeV)

−2 and several values of η. We take√
s= 500GeV.
When η = 0 and π, there is no apparent time variation

in the laboratory frame, because θEV = 0. In this case, the
graph of 〈dσ/dφ〉T show large variation as compared with
that for other values of η. To take the time average weaken
the variation of 〈dσ/dφ〉T for η �= 0, π.3

3 If θE were constant vector in the laboratory coordinate
system, the azimuthal angle distribution should be different
from Fig. 4, except for the case η = 0, π. In case that θE is
a constant vector in the laboratory frame, the results have been
shown in [20].

Fig. 4. Time averaged azimuthal angle distribution for η = 0,
π/6, π/3, π/2, 2π/3, 5π/6, π. We set the laboratory coordinate
system by taking (δ, a) = (π/4, π/4). We take

√
s = 500 GeV

and θE = (500 GeV)
−2

We see from Fig. 4 that the curves of 〈dσ/dφ〉T are sen-
sitive to the value of η around φ � 0.7π and also almost
independent of the value of η around φ � 1.7π. Further-
more 〈dσ/dφ〉T is almost flat around φ� 1.7π for any η.
Those specific angles 0.7π and 1.7π can be interpreted

as the azimuthal angle of θES and −θES in the laboratory
coordinate system. In other words, those are the azimuthal
angles of the North Pole and the South Pole of the celes-
tial sphere. Since we take (δ, a) = (π/4, π/4), the azimuthal
angle φNES of θES can be derived from (9) as follows

cosφNES =
−cδsa√
1− c2δc

2
a

=−
1
√
3
,

sinφNES =
sδ√
1− c2δc

2
a

=

√
2

3
, (32)

then φNES � 0.7π and the azimuthal angle of −θES is given
by φNES+π � 1.7π.
We also see from Fig. 4 that each input η and π− η

gives the same distribution of 〈dσ/dφ〉T . This is because
the differential cross-section of e−e+→ γγ is symmetric for
θE↔−θE.
We may determine η, except for the twofold ambigu-

ity between η and π−η, by fitting the shape of 〈dσ/dφ〉T ,
especially at around φ� φNES = 0.7π. We may also deter-
mine θE almost independently of η bymeasuring the deficit
of 〈dσ/dφ〉T compared with the QED prediction around
φ� 1.7π.

4.2 Time dependent total cross-section

In order to determine ξ, we need to trace the apparent time
variation of observables due to the earth’s rotation. Since
the total cross-section σobs depends on θE , η and also ξ,
we may expect that θE , η and ξ could be determined by
measuring the time variation of σobs precisely, except for
the twofold ambiguity between (η, ξ) and (π−η, ξ+π).
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Fig. 5. Apparent time variation of total cross section for η =
0, π/6, π/3, π/2, 2π/3, 5π/6 and π. We take (δ, a) = (π/4, π/4),√
s= 500 GeV and θE = (500 GeV)

−2

Figure 5 shows σobs as a function of ωt− ξ for θE =
(500 GeV)−2 and for several values of η. We can see from
Fig. 5 that σobs is sensitive to the η. If the time varia-
tion of total cross-section is observed, we could determine
both the magnitude and the direction of θE by fitting the
NCQED prediction of σobs with the data in the three pa-
rameter space (θE , η, ξ). The magnitude θE and the angle
η may be determined by fitting both the magnitude and
the time variation of σobs. The ξ may be determined by the
measurement of the phase of time evolution of σobs.
Although we may determine θE by tracing the time

variation of the differential cross-section of e−e+→ γγ in-
stead of total cross-section, we can imagine that such an
experiment needs very large luminosity. This is because we
must divide not only the phase space but also the time
distribution into many bins, in order to trace the time vari-
ation. Therefore, in the determination of θE , η and ξ, we
had better probe the time variation of total cross-section
in the early stage of experiments at e−e+ linear colliders.
It should be noted, however, that once a positive signal is
identified, the expected time variation can be tested in de-
tail not only at linear collider experiments but also at all
the other on-going and completed experiments.

4.3 〈dσ/dφ〉T vs. σobs

We can see from Figs. 4 and 5 that 〈dσ/dφ〉T and σobs
show opposite behavior for each input value of η. For ex-
ample, when η = 0 or π, we may observe large variation
of azimuthal angle distribution 〈dσ/dφ〉T . In this case,
we find no time variation of σobs. On the contrary, when
η = π/3 or 2π/3, since the variation of 〈dσ/dφ〉T is very
small, we may observe the flat distribution in the experi-
ments. In this case, we find large time variation of σobs.
Therefore we may expect that non-uniform distribution
due to the NCQED effect should appear in 〈dσ/dφ〉T
and/or σobs for any values of η and ξ, if θE is large enough.

Fig. 6. Time averaged total cross-section of e−e+ → γγ
for θE = (400 GeV)

−2, (500 GeV)−2, (600 GeV)−2 and
(1000 GeV)−2 are shown. Horizontal axis is taken to be angle
η. QED result is also shown. We take (δ, a) = (π/4, π/4) and√
s= 500 GeV

4.4 Time averaged total cross-section

Finally, we consider what we can measure by the time av-
eraged total cross-section 〈σ〉T . Figure 6 shows 〈σ〉T as
a function of η. It is easy to see that 〈σ〉T is almost indepen-
dent of η. Therefore if a deficit of 〈σ〉T is observed, we can
determine θE independently of η.
On the other hand, if we observe no signal, we may ob-

tain the upper limit on θE . The 1σ deviation for total cross-
section in QED, σQED, can be estimated by

√
σQED/L. For√

s = 500GeV and ε = 0.2, we have (28.89/
√
L) where L

is the luminosity given in fb−1. In this case, an expected
95%CL upper limit on θE is found to be

θE � (600GeV)−2 for L= 100 fb−1. (33)

Furthermore, since |σQED−〈σ〉T | ∝ (sθE)
2 for |sθE | < 1,

we may estimate 95%CL upper limit on θE for arbitrary L
from (33) as follows:

θE � (600GeV)−2
(100 fb−1

L

)1/4
. (34)

For example, we find θE � (800GeV)−2 whenL=1000 fb−1.

5 Conclusion and remarks

We have presented phenomenological formulation of the
apparent time variation of noncommutativity parameter
θµν in the laboratory coordinate system. In our framework,
the laboratory coordinate system is chosen as the standard
one for collider experiments, and the primary coordinate
system fixed to the celestial sphere have been introduced.
We have shown the transformation formula between the
primary and the laboratory coordinate system, and also



J. Kamoshita: Probing noncommutative space-time in the laboratory frame 457

shown the expression of θE in the laboratory coordinate
system. The formulation presented in this paper is appli-
cable to the study of any models which predict an intrinsic
direction of the space-time [9, 44, 45].
As an example, we have applied our formalism to

NCQED and discussed how we can measure θE at future
e−e+ linear collider experiments by the process e−e+→
γγ. The θE have been parameterized by θE , η and ξ in the
primary coordinate system. We have shown that θE may
be determined by the detailed study of the time depen-
dent total cross-section, though twofold ambiguity in the
parameter space (η, ξ) remains. To determine ξ, we need to
probe the phase of the time evolution of σobs. If there is no
signal, we can obtain the upper limit on θE independently
of the direction of θE.
So far we have considered one experiment with (δ,

a)=(π/4, π/4). If there are several detector sites in the
e−e+ collider experiment and the direction of e− beam in
each site is set to be along to the different direction, such
as the four LEP experiments, then the angular distribu-
tions of e−e+→ γγ and the time variation of observables
should behave differently in each experiment. This is be-
cause the direction of θES in the laboratory coordinate sys-
tem at one detector site differs from that at other detector
sites. Therefore we can expect that the combined analy-
sis of several experiments with the different (δ, a) plays an
important role in the attempt to probe the space-time non-
commutativity.
Finally, we would like to make some comments on the

determination of the magnetic-like component θB. Since
the process e−e+→ γγ is independent of θB, to determine
θB, we must consider other processes relevant to θB, for ex-
ample e−γ→ e−γ process which depend on both θE and
θB. The process γγ→ γγ may also be available to deter-
mine θB. By combining the results from those processes, we
may determine θE and θB. We postpone the study of this
matter to future studies.
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6. V.A. Kostelecký, C.D. Lane, Phys. Rev. D 60, 116010
(1999)
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